From 1 - 10 / 10
  • <div>The groundwater and surface water systems associated with the Upper Darling River Floodplain (UDF) in arid northwest New South Wales form part of the Murray-Darling Basin drainage system, which hosts 40% of Australia’s agricultural production. Increasing water use demands and a changing regional climate are affecting hydrological systems, and consequently impacting the quality and quantity of water availability to communities, industries and the environment.</div><div>As part of the Australian Government’s Exploring for the Future program, the UDF project is working in collaboration with State partners to collect and integrate new data and information with existing hydrogeological knowledge. The goal is to provide analyses and products that assist water managers to increase water security in the region, with a focus on groundwater resources. </div><div>As part of this project we are assessing the occurrence of, and geological controls on, potable water resources within the Darling Alluvium (DA), which comprises unconsolidated sediments (<140 m thick) associated with the modern and paleo-Darling River. The DA’s relationship to the underlying Eromanga, Surat (Great Artesian Basin) and Murray basins is also important, particularly in the context of potential groundwater sources or sinks, and connection between low and high quality groundwater resources. At least one major fault system is known to influence groundwater flow paths and control groundwater-surface water interaction.</div><div>Data collection across the project area has commenced, with an airborne electromagnetic (AEM) survey already complete, and new geophysical, hydrochemical and hydrodynamic data being acquired. Preliminary interpretation of the new AEM data in conjunction with existing geological and hydrogeological information has already revealed the major paths and geometries of the paleo-Darling River, given important insights into potential fault controls on groundwater flow paths, and shown variation in the thickness, distribution and character of the DA, which has direct implications for groundwater–surface water connectivity.</div><div><br></div>

  • <div> A key issue for explorers in Australia is the abundant sedimentary and regolith cover obscuring access to underlying potentially prospective rocks. &nbsp;Multilayered chronostratigraphic interpretation of regional broad line-spaced (~20&nbsp;km) airborne electromagnetic (AEM) conductivity sections have led to breakthroughs in Australia’s near-surface geoscience. &nbsp;A dedicated/systematic workflow has been developed to characterise the thickness of cover and the depth to basement rocks, by delineating contact geometries, and by capturing stratigraphic units, their ages and relationships. &nbsp;Results provide a fundamental geological framework, currently covering 27% of the Australian continent, or approximately 2,085,000&nbsp;km2. &nbsp;Delivery as precompetitive data in various non-proprietary formats and on various platforms ensures that these interpretations represent an enduring and meaningful contribution to academia, government and industry.&nbsp;The outputs support resource exploration, hazard mapping, environmental management, and uncertainty attribution.&nbsp;This work encourages exploration investment, can reduce exploration risks and costs, helps expand search area whilst aiding target identification, and allows users to make well-informed decisions. Presented herein are some key findings from interpretations in potentially prospective, yet in some cases, underexplored regions from around Australia.&nbsp;</div> This abstract was submitted & presented to the 8th International Airborne Electromagnetics Workshop (AEM2023) (https://www.aseg.org.au/news/aem-2023)

  • <div>This study was commissioned by Geoscience Australia (GA) as part of the Exploring for the Future program to produce a report on the organic petrology for rock samples from drill holes of the Birrindudu Basin, Northern Territory, Australia. A suite of 130 drill core samples from 6 drill holes was analysed using standard organic petrological methods to identify the types of organic matter present, assess their relative abundances and determine the levels of thermal maturity attained by the sedimentary organic matter using the reflectance of organoclasts present. </div>

  • As part of Geoscience Australia's Exploring for the Future program, the East Tennant region, which is centred on the Barkly Roadhouse in the Northern Territory, was identified as having favourable geological and geophysical indicators of mineral systems potential. Potentially prospective stratigraphy in the East Tennant region is completely concealed beneath Mesoproterozoic to Quaternary cover sequences. Prior to 2020 basement rocks in the East Tennant region were only known from a handful of legacy boreholes, supported by geophysical interpretation. In order to test geophysical interpretations and obtain additional samples of basement rocks for detailed analysis, a stratigraphic drilling campaign was undertaken in the East Tennant region as part of the MinEx CRC’s National Drilling Initiative. Ten stratigraphic boreholes were drilled through the cover sequences and into basement for a total of nearly 4000 m, including over 1500 m of diamond cored basement rocks to be used for scientific purposes. Inorganic geochemical samples from East Tennant National Drilling Initiative boreholes were taken to characterise cover and basement rocks intersected during drilling. Two sampling approaches were implemented based on the rocks intersected: 1) Borehole NDIBK04 contained localised sulphide mineralisation and elevated concentrations of several economically-significant elements in portable X-ray fluorescence data. In order to understand the geochemical variability and distribution of elements important for mineral system characterisation, the entire basement interval was sampled at nominal one metre intervals. This spacing was reduced to between 0.5 and 0.25 m from 237 m to 263 m to better understand a more intense zone of mineralisation, and 2) Samples from boreholes NDIBK01, NDIBK02, NDIBK03, NDIBK05, NDIBK06, NDIBK07, NDIBK08, NDIBK09 and NDIBK10 were selected to capture lithological and geochemical variability to establish bulk rock geochemical compositions for further interpretation. Attempts were made to sample representative, lithologically consistent intervals. A total of 402 samples were selected for analysis. Sample preparation was completed at Geoscience Australia and Bureau Veritas, with all analyses performed by Bureau Veritas in Perth. All samples were submitted for X-ray fluorescence (XRF), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), FeO determination, and loss on ignition (LOI). Samples from borehole NDIBK04 also underwent total combustion C and S, and Pb collection fire assay by ICP-MS for determination of Au, Pt and Pd concentrations. This data release presents inorganic geochemistry data acquired on rock samples from the ten East Tennant National Drilling Initiative boreholes.

  • <div>The Petroleum Systems Summary database stores the compilation of the current understanding of petroleum systems information by basin across Australia. The Petroleum Systems Summary database and delivery tool provide high-level information of the current understanding of key petroleum systems for areas of interest. For example, geological studies in the Exploring for the Future (EFTF) program have included the Canning, McArthur and South Nicholson basins (Carr et al., 2016; Hashimoto et al., 2018). The database and tool aim to assist geological studies by summarising and interpreting key datasets related to conventional and unconventional hydrocarbon exploration. Each petroleum systems summary includes a synopsis of the basin and key figures detailing the basin outline, major structural components, data availability, petroleum systems events chart and stratigraphy, and a précis of the key elements of source, reservoir and seal. Standardisation of petroleum systems nomenclature establishes a framework for each basin after Bradshaw (1993) and Bradshaw et al. (1994), with the source-reservoir naming conventions adopted from Magoon and Dow (1994).&nbsp;</div><div><br></div><div>The resource is accessible via the Geoscience Australia Portal&nbsp;(https://portal.ga.gov.au/) via the Petroleum Systems Summary Tool (Edwards et al., 2020).</div>

  • Brumbys 1 was an appraisal well drilled and cored through Brumbys Fault at the CO2CRC Otway International Test Centre in 2018. The Otway Project is located in South West Victoria, on private farming property approximately 35 km southeast of Warrnambool and approximately 10 km northwest of the town of Peterborough. Total measured depth was 126.6 m (80 degrees). Sonic drilling enabled excellent core recovery and the borehole was completed as a groundwater monitoring well. Brumbys 1 cores through the upper Hesse Clay, Port Campbell Limestone and extends into the Gellibrand Marl. This dataset compiles the extensive analysis undertaken on the core. Analysis includes: Core log; Foram Analysis; Paleodepth; % Carbonate (CaCO3); X-Ray Fluorescence Spectrometry (XRF); Inductively Coupled Plasma Mass Spectrometry (ICP-MS); X-Ray Diffraction (XRD); Grain Size; Density; Surface Area Analysis (SAA); Gamma. Samples were taken at approximately 1-2 m intervals.

  • Geoscience Australia has undertaken a regional seismic mapping study that extends into the frontier deep-water region of the offshore Otway Basin. This work builds on seismic mapping and petroleum systems modelling published in the 2021 Otway Basin Regional Study. Seismic interpretation spans over 18 000 line-km of new and reprocessed data collected in the 2020 Otway Basin seismic program and over 40 000 line-km of legacy 2D seismic data. Fault mapping has resulted in refinement and reinterpretation of regional structural elements, particularly in the deep-water areas. Structure surfaces and isochron maps highlight Shipwreck (Turonian–Santonian) and Sherbrook (Campanian–Maastrichtian) supersequence depocentres across the deep-water part of the basin.

  • <div>The groundwater and surface water systems associated with the Upper Darling River Floodplain (UDF) in arid northwest New South Wales form part of the Murray-Darling Basin drainage system, which hosts 40% of Australia’s agricultural production. Increasing water use demands and a changing regional climate are affecting hydrological systems, and consequently impacting the quality and quantity of water availability to communities, industries and the environment.</div><div>As part of the Australian Government’s Exploring for the Future program, the UDF project is working in collaboration with State partners to collect and integrate new data and information with existing hydrogeological knowledge. The goal is to provide analyses and products that assist water managers to increase water security in the region, with a focus on groundwater resources. </div><div>As part of this project we are assessing the occurrence of, and geological controls on, potable water resources within the Darling Alluvium (DA), which comprises unconsolidated sediments (<140 m thick) associated with the modern and paleo-Darling River. The DA’s relationship to the underlying Eromanga, Surat (Great Artesian Basin) and Murray basins is also important, particularly in the context of potential groundwater sources or sinks, and connection between low and high quality groundwater resources. At least one major fault system is known to influence groundwater flow paths and control groundwater-surface water interaction.</div><div>Data collection across the project area has commenced, with an airborne electromagnetic (AEM) survey already complete, and new geophysical, hydrochemical and hydrodynamic data being acquired. Preliminary interpretation of the new AEM data in conjunction with existing geological and hydrogeological information has already revealed the major paths and geometries of the paleo-Darling River, given important insights into fault controls on groundwater flow paths, and shown variation in the thickness, distribution and character of the DA, which has direct implications for groundwater–surface water connectivity.</div><div><br></div>

  • This study was commissioned by Geoscience Australia (GA) to produce a report on seal capacity of select samples from wells in the Officer Basin of Western Australia and South Australia. Plugs were taken from the Giles-1, Yowalga-3, Vines-1 and Birksgate-1 wells and analysed via mercury injection capillary pressure testing. Results demonstrate that the analysed samples are capable of sealing very large columns of both methane and carbon dioxide.

  • The Officer Basin in South Australia and Western Australia is the focus of a regional stratigraphic study being undertaken by the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to increasing investment in resource exploration in Australia. This data release provides data from new digital photography, X-ray Computerised Tomography (XCT) scanning, unconfined compressive strength (UCS) and tensile strength, laboratory ultrasonic testing, and gas porosity and permeability experiments for 41 samples from five legacy stratigraphic and petroleum exploration boreholes drilled within the Officer Basin. Additional low permeability tests were undertaken on select samples that were identified as being ultra-tight (permeability <1 µD). These samples were analysed at CSIRO Geomechanics and Geophysics Laboratory in Perth during April to June 2021.